If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+4=94
We move all terms to the left:
u^2+4-(94)=0
We add all the numbers together, and all the variables
u^2-90=0
a = 1; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·1·(-90)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*1}=\frac{0-6\sqrt{10}}{2} =-\frac{6\sqrt{10}}{2} =-3\sqrt{10} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*1}=\frac{0+6\sqrt{10}}{2} =\frac{6\sqrt{10}}{2} =3\sqrt{10} $
| -2-3x=55 | | (15x-12)=(5x-18) | | 8q-19=5+3q | | 45+40+77=2x+x | | 1÷2x=1÷4 | | 3q-19=5+3q | | .5x-6+2=1.25x+10-9.5 | | $5.25x+$20.00=$83.00 | | (6x+13)=(14x-33) | | 40x+(15*1.5x)=960 | | 40x+(15x*1.5)=960 | | 5x+13=22 | | 2y+3y-40=3y | | (3/4)(x+8)=(1/3)(x+27) | | (3x-1)(2x+3)=(x+9)(x+8) | | .75x+6=(.33)x+9 | | 17/4+2/3|3y-9|=-4 | | 174=126-x | | (2x-1)^(x+1)^=9 | | .75x+6=(1/3)x+9 | | (x+16)+(x+18)=(6x+2) | | 4^x=99 | | 3.25x-1.5x=1.25 | | (X+3)^(x-1)^=40 | | (2x-3)^=16 | | 8-2/3x=12 | | X(x+5)=x+77 | | 12x-24x+44=0 | | x+5=2x-12 | | 10x+x+2x+13=145 | | 2=-4(3a+2)+13a | | 3.5d=14 |